QUANTITATIVE ANALYSIS OF VITALITY OF RETINAL GANGLION CELLS IN EXPERIMENTAL LOW-PRESSURE GLAUCOMA IN RATS: THE EFFECT OF POLARIZED LIGHT THERAPY

Authors

  • N. V. Voitenko Institute of Physiology named after O. O. Bogomoletz of NASU Kyiv, Ukraine
  • S. O. Rykov National Medical Academy of Postgraduate Education named after P. L. Shupyk of the Ministry of Public Health of Ukraine Kyiv, Ukraine
  • I. V. Shargorodska National Medical Academy of Postgraduate Education named after P. L. Shupyk of the Ministry of Public Health of Ukraine Kyiv, Ukraine
  • K. S. Agashkov Institute of Physiology named after O. O. Bogomoletz of NASU Kyiv, Ukraine
  • M. E. Krasniakova Institute of Physiology named after O. O. Bogomoletz of NASU Kyiv, Ukraine
  • N. S. Nikolaichuk Kyiv City Clinical Ophthalmological Hospital “Eye Microsurgery Center” of the Ministry of Public Health of Ukraine Kyiv, Ukraine
  • O. A. Rybachuk Institute of Physiology named after O. O. Bogomoletz of NASU Kyiv, Ukraine
  • E. Y. Zabenko Institute of Physiology named after O. O. Bogomoletz of NASU Kyiv, Ukraine
  • A. V. Dromaretsky Institute of Physiology named after O. O. Bogomoletz of NASU Kyiv, Ukraine

DOI:

https://doi.org/10.22141/2309-8147.5.3.2017.172351

Keywords:

low-pressure glaucoma, retinal ganglion cells, optic nerve, polarized green light, fl uorescent dye

Abstract

Aim. Glaucoma is a disease characterized by a decrease in visual acuity, narrowing of the visual fi elds due to damage of retinal ganglion cells under the infl uence of increased intraocular pressure. Low-pressure glaucoma (normotensive glaucoma) is a progressive neuropathy of the optic nerve without an increase in intraocular pressure, characterized by narrowing of the fi elds, decreased visual acuity, or development of complete blindness with an atrophy of optic nerve discs. The aim of this study was to analyze the vitality of retinal ganglion cells, which are affected by glaucoma, after their specifi c identifi cation.
Materials and methods. In this study, retinal ganglion cells were identifi ed by the injection of the fl uorescent dye Fluorogold into the structures where the axons of these cells terminate, namely, the superior colliculi of the midbrain.
Experimental low-pressure glaucoma in rats was induced by damage to the optic nerves.
Results and discussion. Here, we shown that in rats with experimental glaucoma the amount of ganglion cells in the retina is signifi cantly reduced in comparison with control animals. The analysis of the effect of polarized light on ganglionic cells of the retina in the model of experimental glaucoma in rats did not reveal any signifi cant differences from the control.

References

Barron K. D. Qualitative and quantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush / K. D. Barron, M. P. Dentinger, G. Krohel [et al.] // J Neurocytol. – 1986. – Vol. 15. – P. 345–362.

Bueno J. Polarization and retinal image quality estimates in the human eye / J. Bueno // Opt Soc Am A Opt Image Sci Vis. – 2001. – Vol. 18 (3). – P. 489–496.

Eells J. T. Therapeutic photobiomodulation for methanol-induced retinal toxicity / J. T. Eells, M. M. Henry, P. Summerfelt [et al.] // Proc Natl Acad Sci USA. – 2003. – Vol. 100 (6). – P. 3439–3444.

Fisher J. Vaccination for neuroprotection in the mouse optic nerve: implications for optic neuropathies / J. Fisher // J Neurosci. – 2001. – Vol. 21. – P. 136–142.

Hamblin M. R. Mechanisms of low level light therapy / M. R. Hamblin, T. N. Demidova // Proc of Spie. – 2006. – Vol. 6140 (6). – P. 1–12.

Inman D. M. Reactive nonproliferative gliosis predominates in a chronic model of glaucoma / D. M. Inman, P. J. Horner // Glia. – 2007. – Vol. 55. – P. 942–953. – DOI: 10.1002/glia.20516.

Kalesnykas G. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma / G. Kalesnykas, E. N. Oglesby, D. J. Zack [et al.] // Investigative Ophthalmology & Visual Science. – 2012. – Vol. 53 (7). – P. 3847–3857. – DOI: 10.1167/iovs.12–9712.

Karu T. I. A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation / T. I. Karu, L. V. Pyatibrat, N. I. Afanasyeva // Photochem Photobiol. – 2004. – Vol. 80 (2). – P. 366–372.

Karu T. I. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome oxidase under near IR radiation / T. I. Karu, L. V. Pyati brat, S. F. Kolyakov, N. I. Afanasyeva // J Photochem Photobiol B. – 2005. – Vol. 81 (2). – P. 98–106.

Karu T. I. Photobiology of Low-Power Laser Therapy / T. I. Karu // United Kingdom: The Universities Press (Belfast) Ltd. – 1989.

Karu T. J. Primary and Secondary mechanisms of action on visible to near-IR Radiation on cells / T. J. Karu // Photochem Photobiol. – 1999. – Vol. 49. – P. 1–17.

Levene R. Z. Low tension glaucoma: a critical review and new material / R. Z. Levene // Surv Ophthalmol. – 1980. – Vol. 24 (6). – P. 621–664.

Levine R. Z. Low-tension glaucoma: A critical review and new material / R. Z. Levine // Surv Ophthalmol. – 1980. – Vol. 24. – P. 621–663.

Levkovitch-Verbin H. RGC death in mice after optic nerve crush injury: oxidative stress and neuroprotection / H. Levkovitch-Verbin // Investigative ophthalmology & visual science. – 2000. – Vol. 41. – P. 4169–4174.

Li Y. VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats / Y. Li // The Journal of clinical investigation. – 2008. – Vol. 118. – P. 913–923.

Linden R. Massive retinotectal projection in rats /R. Linden, V. H. Perry // Brain Res. – 1983. – Vol. 272. – P. 145–149.

Liu S. Tracking retinal microgliosis in models of retinal ganglion cell damage / S. Liu, Z. W. Li, R. N. Weinreb [et al.] // Invest Ophthalmol Vis Sci. – 2012. – Vol. 53. – P. 6254–6262. – DOI: 10.1167/iovs.12–9450.

Lovschall H. Low level laser therapy effect on mitochondrial rodamine 123 uptake in human oral fi broblasts in vitro / H. Lovschall, D. Arenholt-Bindslev //Lasers Life Sci. – 1998. – Vol. 8. – P. 101–116.

Paxinos G. The Rat Brain in Stereotaxic Coordinates /G. Paxinos. – Sydney: Academic Press. – 2008. – 400 p.

Perez V. L. The eye: a window to the soul of the immune system / V. L. Perez, A. M. Saed, Y. Tan [et al.] // J Autoimmun. – 2013. – Vol. 45. – P. 7–14. – DOI: 10.1016/j.jaut.2013.06.011.

Quigley H. A. The number of people with glaucoma worldwide in 2010 and 2020 / H. A. Quigley, A. T. Broman // Br J Ophthalmol. – 2006. – Vol. 90. – P. 262–267.

Sadun A. A. Mitochondrial optic neuropathies / A. A. Sadun // J Neurol Neurosurg Psychiatry. – 2002. – Vol. 72. – P. 423–425.

Salinas-Navarro M. A computerized analysis of the entire retinal ganglion cell population and its spatial distribution in adult rats / M. Salinas-Navarro, S. Mayor-Torroglosa, M. Jimenez-Lopez [et al.] //Vis. Res. – 2009. – Vol. 49. – P. 115–126.

Salinas-Navarro M. Retinal ganglion cell population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution / M. Salinas-Navarro, M. Jimenez-Lopez, F. J. Valiente-Soriano [et al.] // Vis. Res. – 2009. – Vol. 49. – P. 637–647.

Sommer A. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey / A. Sommer, J. M. Tielsch, J. Katz [et al.] // Arch Ophthal mol. – 1991. – Vol. 109. – P. 1090–1095.

Tang Z. Survival effect of PDGF-CC rescues neurons from apoptosis in both brain and retina by regulating GSK3beta phosphorylation / Z. Tang // The Journal of experimental medicine. – 2010. – Vol. 207. – P. 867–880.

Tielsch J. M. A population based evaluation of glaucoma screening: The Baltimore Eye Survey / J. M. Tielsch, J. Katz, K. Singh [et al.] // Am J Epidemiol. – 1991. – Vol. 134. – P. 1102–1110.

Wong-Riley M. T. Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons / M. T. Wong-Riley, X. Bai, E. Buchmann, H. T. Whelan // NeuroReport. – 2001. – Vol. 12. – P. 3033–3037.

Wong-Riley M. T. Photobiomodulation directly benefi ts primary neurons functionally inactivated by toxins: role of cytochrome oxidase / M. T. Wong-Riley, H. L. Liang, J. T. Eells [et al.] // J Biol Chem. – 2005. – Vol. 280 (6). – P. 4761–4771.

Yoles E. GM1 reduces injury-induced metabolic defi - cits and degeneration in the rat optic nerve / E. Yoles //Investigative ophthalmology & visual science. – 1992. – Vol. 33. – P. 3586–3591.

Zhang C. Depolarization stimulation upregulates GA-binding protein in neurons: a transcription factor involved in the bigenomic expression of cytochrome oxidase subunits / C. Zhang, M. Wong-Riley // Eur J Neurosci. – 2000. – Vol. 12. – P. 1013–1023.

Zhongshu T. Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival / T. Zhongshu, Zh. Shuihua, Lee Chunsik [et al.] // J Vis Exp. – 2011. – Vol. 50. – P. 2685.

Published

2017-11-01

Issue

Section

Clinical Ophthalmology