Risk of the development of postoperative hemophthalmos in patients with diabetic retinopathy and type 2 diabetes mellitus

Authors

  • S.O. Rykov Shupyk National Healthcare University, Kyiv, Ukraine
  • S.S. Lytvinenko Shupyk National Healthcare University, Kyiv, Ukraine

DOI:

https://doi.org/10.22141/2309-8147.10.1.2022.288

Keywords:

closed subtotal vitrectomy, post-operative hemo­phthalmos, prognosis, diabetic retinopathy, diabetic maculopathy, type 2 diabetes mellitus

Abstract

Background. The vascular disruption, which develops in diabetic retinopathy (DR), is a direct consequence of the persistent hyperglycemia on the background of type 2 diabetes mellitus (DM2) and is accompanied both by an idiopathic hemophthalmos and a hemophthalmos after advanced vitreoretinal surgeries for DR or diabetic maculopathy. The study was aimed to assess risks of post-operative hemophthalmos emergence in cases of diabetic retinopathy and type 2 diabetes mellitus. Materials and methods. The study included 118 patients (118 eyes) with DM2 and DR. They were divided into 3 groups. Group I consisted of patients with mild non-proliferative DR (NPDR; 28 eyes); II group included moderate to severe NPDR (49 eyes); group III included patients with proliferative DR (PDR; 41 eyes). The patients’ age varied between 44 and 84 years; 52 men (44.1 %) and 66 women (55.9 %). All patients underwent 25+ closed subtotal vitrectomy with gas as air tamponade, internal limiting membrane peeling, and panretinal photocoagulation. EZR v.1.54 package was used to build mathematical models (graphic interface for R statistical software v.4.0.3, R Foundation for Statistical Computing, Vienna, Austria). Results. Within 3 months after vitrectomy, a post-ope­rative hemophthalmos developed in 33.1 % of cases. Through a one-factor logistic regression modelling, it was found that the risk of post-operative hemophthalmos was positively correlated (p < 0.05) with: age (OR = 1.18; 95% IR 1.10–1.26), DM2 duration (OR = 1.06; 95% IR 1.01–1.18), presence of pre-surgical hemophthalmos (OR = 5.66; 95% IR 1.05–30.6), and blood level of HbA1c (OR = 1.40; 95% IR 1.20–1.64). Moreover, a multi-factor logistic regression model for post-operative hemophthalmos prognosis was developed, which included age, DR stage, improvement ratio of the DM2 status as per blood level of HbA1c, and HbA1c blood level. The model decision threshold was Ycrit = 0.296, with sensitivity level of 89.7 % (95% IR 75.8–97.1 %), specificity level of 84.8 % (95% IR 75.0–91.9 %). Conclusions. 1. It was determined that the risk of hemophthalmos emergence after advanced vitreoretinal surgery for DR, DMP, and DM2 was positively correlated (p < 0.05) with: age (OR = 1.18; 95% IR 1.10–1.26), DM2 duration (OR = 1.06; 95% IR 1.01–1.18), presence of pre-surgical hemophthalmos (OR = 5.66; 95% IR 1.05–30.6), and blood level of HbA1c (OR = 1.40; 95% IR 1.20–1.64). 2. The multi-factor logistic regression model of hemophthalmos prognosis after vitreoretinal surgeries included four factor features: age and DR stage, as well as improvement ratio of the DM2 status as per blood level of HbA1c, and HbA1c blood level. The model decision threshold was Ycrit = 0.296, with sensitivity level of 89.7 % (95% IR 75.8–97.1%), specificity level of 84.8 % (95% IR 75.0–91.9 %).

Downloads

Download data is not yet available.

References

Kowall B., Rathmann W., Stang A., Bongaerts B., Kuss O., Herder C. et al. Perceived risk of diabetes seriously underestimates actual diabetes risk: The KORA FF4 study. PLoS One. 2017. 12(1). e0171152. doi: 10.1371/journal.pone.0171152.

Ulyte A., Bähler C., Schwenkglenks M., von Wyl V., Gruebner O., Wei W. et al. Measuring diabetes guideline adherence with claims data: systematic construction of indicators and related challenges. BMJ Open. 2019. 9(4). e027138. doi: 10.1136/bmjopen-2018-027138.

Nentwich M.M., Ulbig M.W. Diabetic retinopathy — ocular complications of diabetes mellitus. World J. Diabetes. 2015 Apr 15. 6(3). 489-99. doi: 10.4239/wjd.v6.i3.489.

Harding J.L., Pavkov M.E., Magliano D.J., Shaw J.E., Gregg E.W. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019. 62(1). 3-16. doi: 10.1007/s00125-018-4711-2.

Thomas R.L., Halim S., Gurudas S., Sivaprasad S., ­Owens D.R. IDF diabetes atlas: a review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res. Clin. Pract. 2019. 157. 107840. doi: 10.1016/j.diabres.2019.107840.

Nørgaard M.F., Grauslund J. Automated screening for diabe­tic retinopathy — a systematic review. Ophthalmic Res. 2018. 60(1). 9-17. doi: 10.1159/000486284.

Treumer F., Roider J. Glaskörperblutung. Wie lange kann man abwarten? [Vitreous body hemorrhage. How long can one wait?]. Ophthalmologe. 2020. 117(9). 866-70. German. doi: 10.1007/s00347-020-01112-7.

Schmidt-Erfurth U., Garcia-Arumi J., Gerendas B.S., Midena E., Sivaprasad S., Tadayoni R. et al. Guidelines for the management of retinal vein occlusion by the european society of retina specialists (EURETINA). Ophthalmologica. 2019. 242(3). 123-62. doi: 10.1159/000502041.

Marques R.E., Sousa D.C., Leal I., Faria M.Y., Marques-Neves C. Complete ILM peeling versus inverted flap technique for ma­cular hole surgery: a meta-analysis. Ophthalmic Surg. Lasers Imaging Retina. 2020. 51(3). 187-A2. doi: 10.3928/23258160-20200228-08.

Taskintuna I., Elsayed M.E., Taskintuna K., Ahmad K., Khandecar R., Schatz P. et al. Comparison of outcomes of four diffe­rent treatment modalities for diabetic vitreous haemorrhage. Sci. Rep. [Internet]. 2020. 10(3674). doi.org/10.1038/s41598-020-60378-8.

Ding Y., Yao B., Hang H., Ye Hui. Multiple factors in the prediction of risk of recurrent vitreous haemorrhage after sutureless vitrectomy for non-clearing vitreous haemorrhage in patients with diabetic retinopathy [Internet]. BMC Ophthalmol. 2020. doi.org/10.1186/s12886-020-01532-8.

Early Treatment Diabetic Retinopathy Study Research Group. Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs — An Extension of the Modified Airlie House Classification: ETDRS Report Number 10. Ophthalmology. 2020 Apr. 127(4S). S99-S119. doi: 10.1016/j.ophtha.2020.01.030.

Pankiv V.I. Cukrovyy diabet: diagnostichny kriteryy, etiologia i patogenez [Diabetes mellitus: diagnostic criteria, etiology and pathogenesis]. International Journal of Endocrinology. 2013. 8(56). 53-64.

Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013. 48. 452-8.

Kim K.E., Yang P.S., Jang E., Kim S., Joung B. Antithrombotic medication and the risk of vitreous hemorrhage in atrial fibrillation: Korean national health insurance service national cohort. Yonsei Med. J. 2019. 60(1). 65-72. doi: 10.3349/ymj.2019.60.1.65.

Lin H.-C., Yang C.-M., Chen S.-N., Hsieh Y.-T. Vitrectomy with internal limiting membrane peeling versus nonsurgical treatment for diabetic macular edema with massive hard exudates. PLoS One. 2020. 15(7). e0236867. doi.org/10.1371/journal.pone.0236867.

Forrester J.V., Kuffova L., Delibegovic M. The role of inflammation in diabetic retinopathy. Front Immunol. 2020. 11. 583687. doi: 10.3389/fimmu.2020.583687.

Kaštelan S., Orešković I., Bišćan F., Kaštelan H., Gvero­vić A.A. Inflammatory and angiogenic biomarkers in diabetic retino­pathy. Biochem. Med. (Zagreb). 2020. 30(3). 030502. doi: 10.11613/BM.2020.030502.

Bapputty R., Talahalli R., Zarini S., Samuels I., Murphy R., Gubitosi-Klug R. Montelukast prevents early diabetic retinopathy in mice. Diabetes. 2019. 68(10). 2004-15. doi: 10.2337/db19-0026.

Menini S., Iacobini C., Vitale M., Pugliese G. The inflammasome in chronic complications of diabetes and related metabolic disorders. Cells. 2020. 9(8). 1812. doi: 10.3390/cells9081812.

Gupta A., Bhatnagar S. Vasoregression: a shared vascular pathology underlying macrovascular and microvascular pathologies? OMICS. 2015. 19(12). 733-53. doi: 10.1089/omi.2015.0128.

Lutty G.A. Diabetic choroidopathy. Vision Res. 2017. 139. 161-67. doi: 10.1016/j.visres.2017.04.011.

Williams D., Argáez C. Acute, sustained, intraocular pressure increases following anti-vascular endothelial growth factor treatment for retinal conditions: a review of clinical evidence and guidelines [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545133/

Senthil S., Dada T., Das T., Kaushik S., Puthuran G.V., Philip R. et al. Neovascular glaucoma — a review. Indian J. Ophthalmol. 2021. 69(3). 525-534. doi: 10.4103/ijo.IJO_1591_20.

Vaz-Pereira S., Morais-Sarmento T., Esteves Marques R. Optical coherence tomography features of neovascularization in proliferative diabetic retinopathy: a systematic review. Int. J. Retina Vitreous. 2020. 6. 26. doi: 10.1186/s40942-020-00230-3.

Mahalingam P., Topiwalla T.T., Ganesan G. Vitreous rebleed following sutureless vitrectomy: Incidence and risk factors. Indian J. Ophthalmol. 2018. 66(4). 558-61. doi: 10.4103/ijo.IJO_770_17.

Published

2022-05-17

Issue

Section

Ophthalmosurgery

Most read articles by the same author(s)

1 2 > >>